CS 303
Design and Analysis of Algorithms

Review For Midterm
Dong Xu

(Based on class note of David Luebke)

Mid-term

- 12:55-1:55pm, Friday, March 19
- Close book
- Bring your calculator
- 30% of your final score
- Office hours during March 15-19
 - Dong: 11am-noon and 3pm-4pm, Wed, Mar 17 (no office hour on Mar 19 due to travel)
 - Ashwin: additional office hours at 9:30-noon, Fri, Mar 19.

Review Of Topics
- Asymptotic notation
- Solving recurrences
- Sorting algorithms
 - Insertion sort
 - Merge sort
 - Heap sort
 - Quick sort
 - Counting sort
 - Radix sort
 - Bucket sort

Review of Topics
- Structures for dynamic sets
 - Priority queues
 - Hash tables

Proof By Induction
- Claim:S(n) is true for all n >= k (e.g., k = 0)
- Basis:
 - Show formula is true when n = k
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Step:
 - Show that formula is then true for n+1

Review: Analyzing Algorithms
- We are interested in asymptotic analysis:
 - Behavior of algorithms as problem size gets large
 - Constants, low-order terms don’t matter
Insertion Sort

Statement	Effort
InsertionSort(A, n) { | |
for i = 2 to n { | c_i
key = A[i] | c_{i(n-1)}
j = i - 1; | c_{i(n-1)}
while (j > 0) and (A[j] > key) { | T
j = j - 1 | (T-(n-1))
} | 0
A[j+1] = key | c_{(n-1)}
} | 0
} | T = t_1 + t_2 + … + t_n where t_i is number of while expression evaluations for the i-th for loop iteration

Analyzing Insertion Sort

- T(n) = c_{1n} + c_{2(n-1)} + c_{3(n-1)} + c_{4T} + c_{5(T-(n-1))} + c_{6(T-(n-1))} + c_{7(n-1)}
- What can T be?
 - Best case – inner loop body never executed
 \[t_i = 1 \] \(T(n) \) is a linear function
 - Worst case – inner loop body executed for all previous elements
 \[t_i = i \] \(T(n) \) is a quadratic function
 - If T is a quadratic function, which terms in the above equation matter?

Upper Bound Notation

- We say InsertionSort’s run time is \(O(n^2) \)
- Properly we should say run time is in \(O(n^2) \)
- Read O as “Big-O” (you’ll also hear it as “order”)
- In general a function
 - \(f(n) \) is \(O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \)
- Formally
 - \(O(g(n)) = \{ f(n): \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \forall n \geq n_0 \} \)

Big O Fact

- A polynomial of degree k is \(O(n^k) \)
- Proof:
 - Suppose \(f(n) = b_k n^k + b_{k-1} n^{k-1} + \ldots + b_1 n + b_0 \)
 - Let \(a_i = |b_i| \)
 - \(f(n) \leq a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 \)
 - \(\leq n^k \sum a_i \frac{n^i}{n^i} \leq n^k \sum a_i \leq cn^k \)

Lower Bound Notation

- We say InsertionSort’s run time is \(\Omega(n) \)
- In general a function
 - \(f(n) \) is \(\Omega(g(n)) \) if \(\exists \) positive constants \(c \) and \(n_0 \) such that \(0 \leq c \cdot g(n) \leq f(n) \forall n \geq n_0 \)

Asymptotic Tight Bound

- A function \(f(n) \) is \(\Theta(g(n)) \) if \(\exists \) positive constants \(c_1, c_2, \) and \(n_0 \) such that
 \[c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0 \]
Other Asymptotic Notations

- A function $f(n)$ is $o(g(n))$ if \exists positive constants c and n_0 such that $f(n) < c \cdot g(n)$ \forall $n \geq n_0$

- A function $f(n)$ is $\omega(g(n))$ if \exists positive constants c and n_0 such that $c \cdot g(n) < f(n)$ \forall $n \geq n_0$

Notation Summary

Notation Summary

- $o()$ is like $<$
- $O()$ is like \leq
- $\omega()$ is like $>$
- $\Omega()$ is like \geq
- $\Theta()$ is like $=$

Review: Recurrences

Recurrence: an equation that describes a function in terms of its value on smaller functions

\[
\begin{align*}
s(n) &= \begin{cases}
0 & n = 0 \\
n + s(n-1) & n > 0
\end{cases} \\
T(n) &= \begin{cases}
c & n = 1 \\
aT\left(\frac{n}{b}\right) + cn & n > 1
\end{cases}
\end{align*}
\]

Review: Solving Recurrences

- Substitution method
- Recursion tree method
- Master method

Review: Substitution Method

- Substitution Method:
 - Guess the form of the answer, then use induction to find the constants and show that solution works
 - Examples:
 - $T(n) = 2T(n/2) + \Theta(n)$ \neq $T(n) = \Theta(n \log n)$
 - We can show that this holds by induction

Substitution Method

- Our goal: show that $T(n) = 2T(n/2) + n = O(n \log n)$
- Thus, we need to show that $T(n) \leq c \cdot n \log n$ with an appropriate choice of c
 - Inductive hypothesis: assume $T\left(\lfloor n/2 \rfloor \right) \leq c \cdot \lfloor n/2 \rfloor \log \lfloor n/2 \rfloor$
 - Substitute back into recurrence to show that $T(n) \leq c \cdot n \log n$ follows, when $c \geq 1$
Review: Recursion Tree

- Recursion tree method:
 - Expand the recurrence into a tree form
 - Work some algebra to express as a summation
 - Evaluate the summation

Review: The Master Theorem

- Given: a divide and conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(n)$
 - Then, the Master Theorem gives us a cookbook for the algorithm’s running time:

\[
\begin{align*}
\text{if } T(n) &= aT(n/b) + f(n) \text{ then} \\
T(n) &= \begin{cases} \\
\Theta(n^{\log_a b}) & f(n) = \Theta(n^{\log_a b}) \\
O(n^{\log_a b}) & f(n) = \Theta(n^{\log_a b+\epsilon}) \\
\Omega(n^{\log_a b-\epsilon}) & f(n) = \Theta(n^{\log_a b-\epsilon}) \quad \text{AND} \quad af(n/b) \leq cf(n) \text{ for large } n \end{cases}
\end{align*}
\]

Review: Merge Sort

\[
\text{MergeSort}(A, \text{left}, \text{right}) \quad \\
\text{if } (\text{left} < \text{right}) \{ \\
\text{mid} = \text{floor}((\text{left} + \text{right}) / 2); \\
\text{MergeSort}(A, \text{left}, \text{mid}); \\
\text{MergeSort}(A, \text{mid+1}, \text{right}); \\
\text{Merge}(A, \text{left}, \text{mid}, \text{right}); \\
\}
\]

// Merge() takes two sorted subarrays of A and // merges them into a single sorted subarray of A. // Merge() takes $O(n)$ time, $n =$ length of A

Review: Analysis of Merge Sort

<table>
<thead>
<tr>
<th>Statement</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>MergeSort$(A, \text{left}, \text{right}) { }$</td>
<td>$T(n)$</td>
</tr>
<tr>
<td>if (left < right) {}</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>mid = floor((left + right) / 2);</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>MergeSort$(A, \text{left}, \text{mid});$</td>
<td>$T(n/2)$</td>
</tr>
<tr>
<td>MergeSort$(A, \text{mid+1}, \text{right});$</td>
<td>$T(n/2)$</td>
</tr>
<tr>
<td>Merge$(A, \text{left}, \text{mid}, \text{right});$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>}</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

- So $T(n) = \Theta(1)$ when $n = 1$, and
 - $2T(n/2) + \Theta(n)$ when $n > 1$
- Solving this recurrence (row?) gives $T(n) = n \log n$

Review: Heaps

- A heap is a “complete” binary tree, usually represented as an array:

\[
\begin{array}{c}
4 \\
10 \\
7 \\
8 \\
9 \\
3 \\
2 \\
16 \\
14 \\
10 \\
8 \\
7 \\
9 \\
3 \\
2 \\
4 \\
1
\end{array}
\]

$A = 16, 14, 10, 8, 7, 9, 3, 2, 4, 1$
Review: Heaps

- To represent a heap as an array:

 - `Parent(i)` { return ⌊i/2⌋; }
 - `Left(i)` { return 2*i; }
 - `right(i)` { return 2*i + 1; }

Review: The Heap Property

- Heaps also satisfy the heap property:

 - `A[Parent(i)] ≥ A[i]` for all nodes `i > 1`
 - In other words, the value of a node is at most the value of its parent
 - The largest value is thus stored at the root (`A[1]`)
 - Because the heap is a binary tree, the height of any node is at most Θ(lg n)

Review: Heapify()

- **Heapify()**: maintain the heap property

 - Given: a node `i` in the heap with children `l` and `r`
 - Given: two subtrees rooted at `l` and `r`, assumed to be heaps
 - Action: let the value of the parent node “float down” so subtree at `i` satisfies the heap property
 - Recurse on that subtree
 - Running time: `O(h)`, `h = height of heap = O(lg n)`

Review: BuildHeap()

- **BuildHeap()**: build heap bottom-up by running **Heapify()** on successive subarrays

 - Walk backwards through the array from `n/2` to 1, calling **Heapify()** on each node.
 - Order of processing guarantees that the children of node `i` are heaps when `i` is processed
 - Easy to show that running time is `O(n lg n)`
 - Can be shown to be `O(n)`
 - Key observation: most subheaps are small

Review: Heapsort()

- **Heapsort()**: an in-place sorting algorithm:

 - Maximum element is at `A[1]`
 - Discard by swapping with element at `A[n]`
 - Decrement heap size `A`
 - `A[n] now contains correct value`
 - Restore heap property at `A[1]` by calling **Heapify()**
 - Running time: `O(n lg n)`
 - **BuildHeap**: `O(n)`, **Heapify**: `n * O(lg n)`

Review: Priority Queues

- The heap data structure is often used for implementing priority queues

 - A data structure for maintaining a set `S` of elements, each with an associated value or `key`
 - Supports the operations **Insert()**, **Maximum()**, and **ExtractMax()**
 - Commonly used for scheduling, event simulation
Priority Queue Operations
- **Insert(S, x)** inserts the element x into set S
- **Maximum(S)** returns the element of S with the maximum key
- **ExtractMax(S)** removes and returns the element of S with the maximum key

Implementing Priority Queues

HeapInsert(A, key)
```c
    heap_size[A] ++;
    i = heap_size[A];
    while (i > 1 AND A[Parent(i)] < key) {
        i = Parent(i);
    }
    A[i] = key;
```

HeapMaximum(A)
```c
    // This one is really tricky:
    return A[i];
```

HeapExtractMax(A)
```c
    if (heap_size[A] < 1) { error; }
    max = A[1];
    heap_size[A] --;
    Heapify(A, 1);
    return max;
```

Review: Quicksort
- **Quicksort pros:**
 - Sorts in place
 - Sorts $O(n \log n)$ in the average case
 - Very efficient in practice
- **Quicksort cons:**
 - Sorts $O(n^2)$ in the worst case
 - Naïve implementation: worst-case = sorted
 - Even picking a different pivot, some particular input will take $O(n^2)$ time

- **Another divide-and-conquer algorithm**
 - The array $A[p..r]$ is *partitioned* into two non-empty subarrays $A[p..q]$ and $A[q+1..r]$
 - Invariant: All elements in $A[p..q]$ are less than all elements in $A[q+1..r]$
 - The subarrays are recursively quicksorted
 - No combining step: two subarrays form an already-sorted array
Review: Quicksort Code

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}

Review: Partition Code

Partition(A, p, r)

x = A[p];
i = p - 1;
j = r + 1;
while (TRUE)
 repeat
 j--;
 until A[j] <= x;
 repeat
 i++;
 until A[i] >= x;
 if (i < j)
 Swap(A, i, j);
 else
 return j;

partition() runs in O(n) time

Review: Analyzing Quicksort

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter, by far, except...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

In the worst case:
T(1) = Θ(1)
T(n) = T(n - 1) + Θ(n)
Works out to
T(n) = Θ(n²)

Average case works out to T(n) = Θ(n lg n)
Key idea: A limited number of unbalanced Partition() is OK

In the best case:
T(n) = 2T(n/2) + Θ(n)
Works out to
T(n) = Θ(n lg n)
Review: Improving Quicksort

- The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input.
- Book discusses two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- *How do these solve the problem?*
 - By insuring that no particular input can be chosen to make quicksort run in $O(n^2)$ time.

Sorting Summary

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - $O(n^2)$ worst case
 - $O(n^2)$ average (equally-likely inputs) case
 - $O(n^2)$ reverse-sorted case

Sorting Summary

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
 - $O(n \lg n)$ worst case
 - Doesn’t sort in place

Sorting Summary

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children’s keys
 - $O(n \lg n)$ worst case
 - Sorts in place
 - Fair amount of shuffling memory around

Sorting Summary

- Quick sort:
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - No merge step needed!
 - $O(n \lg n)$ average case
 - Fast in practice
 - $O(n^2)$ worst case
 - Naive implementation: worst case on sorted input
 - Address this with randomized quicksort

Review: Comparison Sorts

- Comparison sorts: $O(n \lg n)$ at best
 - Model sort with decision tree
 - Path down tree = execution trace of algorithm
 - Leaves of tree = possible permutations of input
 - Tree must have $n!$ leaves, so $O(n \lg n)$ height
Review: Comparison Sorts

<table>
<thead>
<tr>
<th>Sorting</th>
<th>Time</th>
<th>Space</th>
<th>Stability</th>
<th>In place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Insertion</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Merge</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Heap</td>
<td>(\Omega(n \log n))</td>
<td>(O(n \log n))</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick</td>
<td>(O(n \log n))</td>
<td>(O(1))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Counting Sort

- **Counting sort:**
 - Assumption: input is in the range 1..k
 - Basic idea:
 - Count number of elements \(k \leq i\) for each element \(i\)
 - Use that number to place \(i\) in position \(k\) of sorted array
 - No comparisons! Runs in time \(O(n + k)\)
 - Stable sort
 - Does not sort in place:
 - \(O(n)\) array to hold sorted output
 - \(O(k)\) array for scratch storage

```plaintext
CountingSort(A, B, k)
for i=1 to k
    C[i] = 0;
for j=1 to n
    C[A[j]] += 1;
for i=2 to k
    C[i] = C[i] + C[i-1];
for j=n downto 1
    B[C[A[j]]] = A[j];
    C[A[j]] -= 1;
```

Radix Sort

- **Radix sort:**
 - Assumption: input has \(d\) digits ranging from 0 to \(k\)
 - Basic idea:
 - Sort elements by digit starting with least significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over \(n\) numbers with \(d\) digits takes time \(O(n+k)\), so total time \(O(dn+dk)\)
 - When \(d\) is constant and \(k=O(n)\), takes \(O(n)\) time
 - Fast! Stable! Simple!
 - Doesn’t sort in place

Hashing Tables

- **Motivation:** symbol tables
 - A compiler uses a *symbol table* to relate symbols to associated data
 - Symbols: variable names, procedure names, etc.
 - Associated data: memory location, call graph, etc.
 - For a symbol table (also called a *dictionary*), we care about search, insertion, and deletion
 - We typically don’t care about sorted order

Hash Tables

- **More formally:**
 - Given a table \(T\) and a record \(x\), with key (= symbol) and satellite data, we need to support:
 - Insert \((T, x)\)
 - Delete \((T, x)\)
 - Search\((T, x)\)
 - Don’t care about sorting the records
 - *Hash tables* support all the above in \(O(1)\) expected time
Review: Direct Addressing

- **Suppose:**
 - The range of keys is \(0..m-1\)
 - Keys are distinct
- **The idea:**
 - Use key itself as the address into the table
 - Set up an array \(T[0..m-1]\) in which
 - \(T[i] = x\) if \(x \in T\) and \(\text{key}[x] = i\)
 - \(T[i] = \text{NULL}\) otherwise
- This is called a *direct-address table*

Review: Hash Functions

- **Next problem:** *collision*

Review: Resolving Collisions

- **How can we solve the problem of collisions?**
 - **Open addressing**
 - To insert: if slot is full, try another slot, and another, until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
 - **Chaining**
 - Keep linked list of elements in slots
 - Upon collision, just add new element to list

Review: Chaining

- Chaining puts elements that hash to the same slot in a linked list

Review: Analysis Of Hash Tables

- **Simple uniform hashing:** each key in table is equally likely to be hashed to any slot
- **Load factor** \(\alpha = n/m = \text{average # keys per slot}\)
 - Average cost of unsuccessful search = \(O(1+\alpha)\)
 - Successful search: \(O(1 + \alpha/2) = O(1 + \alpha)\)
 - If \(n\) is proportional to \(m\), \(\alpha = O(1)\)
 - So the cost of searching = \(O(1)\) if we size our table appropriately

Review: Choosing A Hash Function

- Choosing the hash function well is crucial
 - Bad hash function puts all elements in same slot
 - A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
- **Methods:**
 - Division method
 - Multiplication method
Review: The Division Method

- \(h(k) = k \mod m \)
 - In words: hash \(k \) into a table with \(m \) slots using the slot given by the remainder of \(k \) divided by \(m \)
- Elements with adjacent keys hashed to different slots: good
- If keys bear relation to \(m \): bad
- Upshot: pick table size \(m \) = prime number not too close to a power of 2 (or 10)

Review: The Multiplication Method

- For a constant \(A, 0 < A < 1 \):
 \[h(k) = \lfloor m \left(kA - \lfloor kA \rfloor \right) \rfloor \]
 - Fractional part of \(kA \)
- Upshot:
 - Choose \(m = 2^p \)
 - Choose \(A \) not too close to 0 or 1
 - Knuth: Good choice for \(A = (\sqrt{5} - 1)/2 \)