CS 303
Design and Analysis of Algorithms

Review For Final Exam
Dong Xu

(Based on class note of David Luebke)
Final Exam

- 8am-10am, Monday, May 10
- Close book
- Bring your calculator
- 40% of your final score
- Office hours during final
 - Dong (109 EBW): 1:30pm-4pm, Friday, May 7
 - Ashwin (302 EBN):
 - 11am-1pm, Thursday, May 6
 - 11am-3pm, Wednesday, May 12 (an opportunity to verify the grading of final and quiz scores).
Final Exam Tips

- 7 problems (6 with 15 pts, 1 with 10 pts)
- Review your quizzes and homework
- 1 hard problem in dynamic programming

Coverage
- 12.1, 12.2, 12.3
- 13.1, 13.2, 13.3
- 14.1, 14.2
- 15.1, 15.2, 15.3
- 16.1, 16.2
Review Topics

- Binary search tree
- Red-black tree
- Augmenting data structure
- Dynamic programming
- Greedy algorithm
Review: Binary Search Trees

- BST property:
 \[\text{key}[\text{left}(x)] \leq \text{key}[x] \leq \text{key}[\text{right}(x)] \]

- Example:

```
  A  B  D  F  H  K
     \  /  \     /\   \
    /  \    |  /  \  |
   /    \   /    \  /
  A     D  F     H  K
```
Review: Inorder Tree Walk

- An **inorder walk** prints the set in sorted order:

  ```
  TreeWalk(x)
  
  TreeWalk(left[x]);
  
  print(x);
  
  TreeWalk(right[x]);
  ```

- Easy to show by induction on the BST property
Review: BST Search

TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);
Review: BST Insert

- Adds an element x to the tree so that the binary search tree property continues to hold

- The basic algorithm
 - Like the search procedure above
 - Insert x in place of NULL
 - Use a “trailing pointer” to keep track of where you came from (like inserting into singly linked list)

- Like search, takes time $O(h)$, $h = \text{tree height}$
Review: Sorting With BSTs

● Basic algorithm:
 ■ Insert elements of unsorted array from 1..\(n \)
 ■ Do an inorder tree walk to print in sorted order

● Running time:
 ■ Best case: \(\Omega(n \ lg \ n) \) (it’s a comparison sort)
 ■ Worst case: \(O(n^2) \)
 ■ Average case: \(O(n \ lg \ n) \) (it’s a quick sort!)
Review: Sorting With BSTs

- **Average case analysis**
 - It’s a form of quicksort!

```plaintext
for i=1 to n
    TreeInsert(A[i]);
    InorderTreeWalk(root);
```
Review: More BST Operations

- Minimum:
 - Find leftmost node in tree

- Successor:
 - x has a right subtree: successor is minimum node in right subtree
 - x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 - Intuition: As long as you move to the left up the tree, you’re visiting smaller nodes.

- Predecessor: similar to successor
Review: More BST Operations

- **Delete:**
 - x has no children:
 - Remove x
 - x has one child:
 - Splice out x
 - x has two children:
 - Swap x with successor
 - Perform case 1 or 2 to delete it

Example: delete K or H or B
Review: Red-Black Trees

- **Red-black trees**:
 - Binary search trees augmented with node color
 - Operations designed to guarantee that the height $h = O(\lg n)$
Red-Black Properties

- The *red-black properties*:
 1. Every node is either red or black
 2. Every leaf (NULL pointer) is black
 - Note: this means every “real” node has 2 children
 3. If a node is red, both children are black
 - Note: can’t have 2 consecutive reds on a path
 4. Every path from node to descendent leaf contains the same number of black nodes
 5. The root is always black

- *black-height*: # black nodes on path to leaf
 - Lets us prove RB tree has height $h \leq 2 \log(n+1)$
Operations On RB Trees

- Since height is $O(\lg n)$, we can show that all BST operations take $O(\lg n)$ time
- Problem: BST Insert() and Delete() modify the tree and could destroy red-black properties
- Solution: restructure the tree in $O(\lg n)$ time
 - You should understand the basic approach of these operations
 - Key operation: *rotation*
RB Trees: Rotation

- Our basic operation for changing tree structure:

- Rotation preserves inorder key ordering
- Rotation takes O(1) time (just swaps pointers)
Review: Dynamic Order Statistics

- We’ve seen algorithms for finding the ith element of an unordered set in $O(n)$ time

- **OS-Trees**: a structure to support finding the ith element of a dynamic set in $O(lg \ n)$ time
 - Support standard dynamic set operations
 - $(\text{Insert}(), \text{Delete}(), \text{Min}(), \text{Max}(), \text{Succ}(), \text{Pred}())$
 - Also support these order statistic operations:
 - \text{void OS-Select(root, i)};
 - \text{int OS-Rank(x)};
OS Trees augment red-black trees:
- Associate a `size` field with each node in the tree
- `x->size` records the size of subtree rooted at `x`, including `x` itself:
Review: OS-Select

- Example: show OS-Select(root, 5):

```c
OS-Select(x, i) {
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```
Review: OS-Select

Example: show OS-Select(root, 5):

```c
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```
Example: show OS-Select(root, 5):

```c
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```
Review: OS-Select

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```
Review: OS-Select

• Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```

```
M 8
C 5
P 2
A 1
D 1
Q 1
F 3
H 1

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

i = 1
r = 1
```
Review: OS-Select

- Example: show OS-Select(root, 5):

```c
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```

Note: use a sentinel NIL element at the leaves with size = 0 to simplify code, avoid testing for NULL
Review: Determining The Rank Of An Element

Idea: rank of right child x is one more than its parent’s rank, plus the size of x’s left subtree

```
OS-Rank(T, x)
{
    r = x->left->size + 1;
    y = x;
    while (y != T->root)
        if (y == y->p->right)
            r = r + y->p->left->size + 1;
        y = y->p;
    return r;
}
```
Review: Determining The Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 y = y->p;
 return r;
}
Review: Determining The Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 y = y->p;
 return r;
}
Review: Determining The Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank(T, x)
{
 $r = x->$left-$>$size + 1;
 $y = x$;
 while ($y != T->$root)
 if ($y == y->$p-$>$right)
 $r = r + y->$p-$>$left-$>$size + 1;
 $y = y->$p;
 return r;
}
Review: Determining The Rank Of An Element

Example 1:

find rank of element with key H

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}
Review: Maintaining Subtree Sizes

- So by keeping subtree sizes, order statistic operations can be done in $O(\lg n)$ time
- Next: maintain sizes during Insert() and Delete() operations
 - Insert(): Increment size fields of nodes traversed during search down the tree
 - Delete(): Decrement sizes along a path from the deleted node to the root
 - Both: Update sizes correctly during rotations
Review: Maintaining Subtree Sizes

- Note that rotation invalidates only \(x \) and \(y \)
- Can recalculate their sizes in constant time
- Thm 15.1: can compute any property in \(O(lg \, n) \) time that depends only on node, left child, and right child
Review: Dynamic Programming

● Summary of the basic idea:
 ■ Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
 ■ Overlapping subproblems: few subproblems in total, many recurring instances of each
 ■ Solve bottom-up, building a table of solved subproblems that are used to solve larger ones
Figure 15.2 (a) An instance of the assembly-line problem with costs e_i, $a_{i,j}$, $l_{i,j}$, and x_i indicated. The heavily shaded path indicates the fastest way through the factory. (b) The values of $f_i[j]$, f^*, $l_i[j]$, and l^* for the instance in part (a).
Matrix Chain-Products

- **Matrix Chain-Product:**
 - Compute $A = A_0 \times A_1 \times \ldots \times A_{n-1}$
 - A_i is $d_i \times d_{i+1}$
 - Problem: How to parenthesize?

- **Matrix Chain-Product Alg.:**
 - Try all possible ways to parenthesize
 $A = A_0 \times A_1 \times \ldots \times A_{n-1}$
 - Calculate number of ops for each one
 - Pick the one that is best
A “Recursive” Approach

● Define **subproblems**:
 ■ Find the best parenthesization of \(A_i * A_{i+1} * \ldots * A_j \).
 ■ Let \(N_{i,j} \) denote the number of operations done by this subproblem.
 ■ The optimal solution for the whole problem is \(N_{0,n-1} \).

● **Subproblem optimality**: The optimal solution can be defined in terms of optimal subproblems
 ■ Assume the final multiply is at index \(i \):
 \((A_0 * \ldots * A_i)(A_{i+1} * \ldots * A_{n-1}) \).
 ■ Then the optimal solution \(N_{0,n-1} \) is the sum of two optimal subproblems, \(N_{0,i} \) and \(N_{i+1,n-1} \) plus the time for the last multiply.
A Characterizing Equation

- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

- Note that subproblems are not independent--the subproblems overlap.
Greedy Algorithms

- A **greedy algorithm** always makes the choice that looks best at the moment

- Indicators:
 - Optimal substructure
 - *Greedy choice property*: a locally optimal choice leads to a globally optimal solution

- Dynamic programming can be overkill; greedy algorithms tend to be easier to code
Activity-Selection

- Formally:
 - Given a set S of n activities
 - $s_i =$ start time of activity i
 - $f_i =$ finish time of activity i
 - Find max-size subset A of compatible activities
 - Assume that $f_1 \leq f_2 \leq \ldots \leq f_n$
Activity Selection: A Greedy Algorithm

- So actual algorithm is simple:
 - Sort the activities by finish time
 - Schedule the first activity
 - Then schedule the next activity in sorted list which starts after previous activity finishes
 - Repeat until no more activities

- Intuition is even more simple:
 - Always pick the activity with the nearest finish time available and reject the conflicts
Review:
The Knapsack Problem

- The famous *knapsack problem*:
 - A thief breaks into a museum. Fabulous paintings, sculptures, and jewels are everywhere. The thief has a good eye for the value of these objects, and knows that each will fetch hundreds or thousands of dollars on the clandestine art collector’s market. But, the thief has only brought a single knapsack to the scene of the robbery, and can take away only what he can carry. What items should the thief take to maximize the haul?
More formally, the 0-1 knapsack problem:

- The thief must choose among n items, where the ith item worth v_i dollars and weighs w_i pounds
- Carrying at most W pounds, maximize value
 - Note: assume v_i, w_i, and W are all integers
 - “0-1” b/c each item must be taken or left in entirety

A variation, the fractional knapsack problem:

- Thief can take fractions of items
- Think of items in 0-1 problem as gold ingots, in fractional problem as buckets of gold dust
Solving The Knapsack Problem

- The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
 - *How?*

- The optimal solution to the 0-1 problem cannot be found with the same greedy strategy
 - Greedy strategy: take in order of dollars/pound
 - Example: 3 items weighing 10, 20, and 30 pounds, knapsack can hold 50 pounds
 - Suppose item 2 is worth $100. Assign values to the other items so that the greedy strategy will fail
0-1 Knapsack problem: a picture

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight w_i</th>
<th>Benefit value b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a knapsack</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Max weight: $W = 20$</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$W = 20$</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
0-1 Knapsack problem: brute-force approach

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be $O(2^n)$
- *Can be done with better efficiency*