CS 303
Design and Analysis of Algorithms

Review For Final Exam
Dong Xu
(Based on class note of David Luebke)

Final Exam
• 8am-10am, Monday, May 10
• Close book
• Bring your calculator
• 40% of your final score
• Office hours during final
 ■ Dong (109 EBW) : 1:30pm-4pm, Friday, May 7
 ■ Ashwin (302 EBN) :
 ○ 11am-1pm, Thursday, May 6
 ○ 11am-3pm, Wednesday, May 12 (an opportunity to verify the grading of final and quiz scores).

Final Exam Tips
• 7 problems (6 with 15 pts, 1 with 10 pts)
• Review your quizzes and homework
• 1 hard problem in dynamic programming
• Coverage
 ■ 12.1, 12.2, 12.3
 ■ 13.1, 13.2, 13.3
 ■ 14.1, 14.2
 ■ 15.1, 15.2, 15.3
 ■ 16.1, 16.2

Review Topics
• Binary search tree
• Red-black tree
• Augmenting data structure
• Dynamic programming
• Greedy algorithm

Review: Binary Search Trees
• BST property:
 key[leaf(x)] ≤ key[x] ≤ key[right(x)]
• Example:

Review: Inorder Tree Walk
• An inorder walk prints the set in sorted order:
 TreeWalk(x)
 TreeWalk(left[x]);
 print(x);
 TreeWalk(right[x]);
• Easy to show by induction on the BST property
Review: BST Search

TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);

Review: BST Insert

● Adds an element x to the tree so that the binary search tree property continues to hold
● The basic algorithm
 ▪ Like the search procedure above
 ▪ Insert x in place of NULL
 ▪ Use a “trailing pointer” to keep track of where you came from (like inserting into singly linked list)
 ▪ Like search, takes time $O(h)$, h = tree height

Review: Sorting With BSTs

● Basic algorithm:
 ▪ Insert elements of unsorted array from 1..n
 ▪ Do an inorder tree walk to print in sorted order
● Running time:
 ▪ Best case: $\Omega(n \log n)$ (it’s a comparison sort)
 ▪ Worst case: $O(n^2)$
 ▪ Average case: $O(n \log n)$ (it’s a quick sort!)

Review: More BST Operations

● Minimum:
 ▪ Find leftmost node in tree
● Successor:
 ▪ x has a right subtree: successor is minimum node in right subtree
 ▪ x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 ▪ Intuition: As long as you move to the left up the tree, you’re visiting smaller nodes.
● Predecessor: similar to successor

Review: More BST Operations

● Delete:
 ▪ x has no children:
 ○ Remove x
 ▪ x has one child:
 ○ Splice out x
 ▪ x has two children:
 ○ Swap x with successor
 ○ Perform case 1 or 2 to delete it

Example: delete K or H or B
Review: Red-Black Trees

- **Red-black trees:**
 - Binary search trees augmented with node color
 - Operations designed to guarantee that the height \(h = O(lg \ n) \)

Red-Black Properties

- **The red-black properties:**
 1. Every node is either red or black
 2. Every leaf (NULL pointer) is black
 - Note: this means every "real" node has 2 children
 3. If a node is red, both children are black
 - Note: can’t have 2 consecutive reds on a path
 4. Every path from node to descendent leaf contains the same number of black nodes
 5. The root is always black

 - **black-height:** # black nodes on path to leaf
 - Lets us prove RB tree has height \(h \leq 2 lg(n+1) \)

Operations On RB Trees

- Since height is \(O(lg \ n) \), we can show that all BST operations take \(O(lg \ n) \) time
- Problem: BST Insert() and Delete() modify the tree and could destroy red-black properties
- Solution: restructure the tree in \(O(lg \ n) \) time
 - You should understand the basic approach of these operations
 - Key operation: rotation

RB Trees: Rotation

- Our basic operation for changing tree structure:

 - Rotation preserves inorder key ordering
 - Rotation takes \(O(1) \) time (just swaps pointers)

Review: Dynamic Order Statistics

- We’ve seen algorithms for finding the \(i \)th element of an unordered set in \(O(n) \) time
- **OS-Trees:** a structure to support finding the \(i \)th element of a dynamic set in \(O(lg \ n) \) time
 - Support standard dynamic set operations (\(\text{Insert}() \), \(\text{Delete}() \), \(\text{Min}() \), \(\text{Max}() \), \(\text{Succ}() \), \(\text{Pred}() \))
 - Also support these order statistic operations:
 - \text{void \text{OS-Select}}(\text{root}, \text{ i});
 - \text{int \text{OS-Rank}}(\text{x});

Review: Order Statistic Trees

- OS Trees augment red-black trees:
 - Associate a \textit{size} field with each node in the tree
 - \textit{x->size} records the size of subtree rooted at \textit{x}, including \textit{x} itself:
Review: OS-Select

Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```

Note: use a sentinel NIL element at the leaves with size = 0 to simplify code, avoid testing for NULL.
Review: Determining The Rank Of An Element

Idea: rank of right child x is one more than its parent’s rank, plus the size of x’s left subtree

$\text{OS-Rank}(T, x)$

```c
r = x->left->size + 1;
y = x;
while (y != T->root)
    if (y == y->p->right)
        r = r + y->p->left->size + 1;
y = y->p;
return r;
```

Example 1: find rank of element with key H

$\text{OS-Rank}(T, x)$

```c
r = x->left->size + 1;
y = x;
while (y != T->root)
    if (y == y->p->right)
        r = r + y->p->left->size + 1;
y = y->p;
return r;
```

Example 1: find rank of element with key H

```c
r = x->left->size + 1;
y = x;
while (y != T->root)
    if (y == y->p->right)
        r = r + y->p->left->size + 1;
y = y->p;
return r;
```

Example 1: find rank of element with key H

```c
r = x->left->size + 1;
y = x;
while (y != T->root)
    if (y == y->p->right)
        r = r + y->p->left->size + 1;
y = y->p;
return r;
```

Example 1: find rank of element with key H

```c
r = x->left->size + 1;
y = x;
while (y != T->root)
    if (y == y->p->right)
        r = r + y->p->left->size + 1;
y = y->p;
return r;
```

Review: Maintaining Subtree Sizes

- So by keeping subtree sizes, order statistic operations can be done in $O(\log n)$ time
- Next: maintain sizes during Insert() and Delete() operations
 - Insert(): Increment size fields of nodes traversed during search down the tree
 - Delete(): Decrement sizes along a path from the deleted node to the root
 - Both: Update sizes correctly during rotations
Review: Maintaining Subtree Sizes

- Note that rotation invalidates only x and y
- Can recalculate their sizes in constant time
- Thm 15.1: can compute any property in \(O(\log n)\) time that depends only on node, left child, and right child

Review: Dynamic Programming

- Summary of the basic idea:
 - Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
 - Overlapping subproblems: few subproblems in total, many recurring instances of each
 - Solve bottom-up, building a table of solved subproblems that are used to solve larger ones

Matrix Chain-Products

- Matrix Chain-Product:
 - Compute \(A = A_0 * A_1 * \ldots * A_{n-1}\)
 - \(A_i \) is \(d_i \times d_{i+1}\)
 - Problem: How to parenthesize?
- Matrix Chain-Product Alg.:
 - Try all possible ways to parenthesize \(A = A_0 * A_1 * \ldots * A_{n-1}\)
 - Calculate number of ops for each one
 - Pick the one that is best

A “Recursive” Approach

- Define subproblems:
 - Find the best parenthesization of \(A_0 * A_1 * \ldots * A_k\).
 - Let \(N_{i,j}\) denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is \(N_{0,n-1}\).

- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - Assume the final multiply is at index \(i\): \((A_0 * \ldots * A_i) * (A_{i+1} * \ldots * A_{n-1})\).
 - Then the optimal solution \(N_{i,n-1}\) is the sum of two optimal subproblems, \(N_{i,j}\) and \(N_{i+1,n-1}\) plus the time for the last multiply.

A Characterizing Equation

- Let us consider all possible places for that final multiply:
 - Recall that \(A_i\) is a \(d_i \times d_{i+1}\) dimensional matrix.
 - So, a characterizing equation for \(N_{i,j}\) is the following:

\[
N_{i,j} = \min_{i \leq k < j} \left(N_{i,k} + N_{k+1,j} + d_i d_k d_{j+1} \right)
\]

- Note that subproblems are not independent—the subproblems overlap.
Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment
- Indicators:
 - Optimal substructure
 - Greedy choice property: a locally optimal choice leads to a globally optimal solution
- Dynamic programming can be overkill; greedy algorithms tend to be easier to code

Activity-Selection

- Formally:
 - Given a set \(S \) of \(n \) activities
 - \(s_i \) = start time of activity \(i \)
 - \(f_i \) = finish time of activity \(i \)
 - Find max-size subset \(A \) of compatible activities

Activity Selection: A Greedy Algorithm

- So actual algorithm is simple:
 - Sort the activities by finish time
 - Schedule the first activity
 - Then schedule the next activity in sorted list which starts after previous activity finishes
 - Repeat until no more activities
- Intuition is even more simple:
 - Always pick the activity with the nearest finish time available and reject the conflicts

Review: The Knapsack Problem

- More formally, the 0-1 knapsack problem:
 - The thief must choose among \(n \) items, where the \(i \)th item worth \(v_i \) dollars and weighs \(w_i \) pounds
 - Carrying at most \(W \) pounds, maximize value
 - Note: assume \(v_i, w_i \), and \(W \) are all integers
 - "0-1" b/c each item must be taken or left in entirety
- A variation, the fractional knapsack problem:
 - Thieves can take fractions of items
 - Think of items in 0-1 problem as gold ingots, in fractional problem as buckets of gold dust

Solving The Knapsack Problem

- The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
 - How?
 - The optimal solution to the 0-1 problem cannot be found with the same greedy strategy
 - Greedy strategy: take in order of dollars/pound
 - Example: 3 items weighing 10, 20, and 30 pounds, knapsack can hold 50 pounds

 - Suppose item 2 is worth $100. Assign values to the other items so that the greedy strategy will fail
0-1 Knapsack problem: brute-force approach

- Since there are \(n \) items, there are \(2^n \) possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to \(W \).
- Running time will be \(O(2^n) \).
- Can be done with better efficiency.

0-1 Knapsack problem: a picture

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight</th>
<th>Benefit value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w_i)</td>
<td>(b_i)</td>
</tr>
<tr>
<td>This is a knapsack</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Max weight: (W = 20)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>