CS 303
Design and Analysis of Algorithms

Review For Midterm
Dong Xu

(Based on class note of David Luebke)
Mid-term

- 12:55-1:55pm, Friday, March 19
- Close book
- Bring your calculator
- 30% of your final score
- Office hours during March 15-19
 - Dong: 11am-noon and 3pm-4pm, Wed, Mar 17 (no office hour on Mar 19 due to travel)
 - Ashwin: additional office hours at 9:30-noon, Fri, Mar 19.
Review Of Topics

• Asymptotic notation
• Solving recurrences
• Sorting algorithms
 ■ Insertion sort
 ■ Merge sort
 ■ Heap sort
 ■ Quick sort
 ■ Counting sort
 ■ Radix sort
 ■ Bucket sort
Review of Topics

- Structures for dynamic sets
 - Priority queues
 - Hash tables
Proof By Induction

- Claim: $S(n)$ is true for all $n \geq k$ (e.g., $k = 0$)
- Basis:
 - Show formula is true when $n = k$
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Step:
 - Show that formula is then true for $n+1$
Review: Analyzing Algorithms

- We are interested in \textit{asymptotic analysis}:
 - Behavior of algorithms as problem size gets large
 - Constants, low-order terms don’t matter
Insertion Sort

<table>
<thead>
<tr>
<th>Statement</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsertionSort(A, n) {</td>
<td></td>
</tr>
<tr>
<td>for i = 2 to n {</td>
<td>c<sub>1</sub>n</td>
</tr>
<tr>
<td>key = A[i]</td>
<td>c<sub>2</sub>(n-1)</td>
</tr>
<tr>
<td>j = i - 1;</td>
<td>c<sub>3</sub>(n-1)</td>
</tr>
<tr>
<td>while (j > 0) and (A[j] > key) {</td>
<td>c<sub>4</sub>T</td>
</tr>
<tr>
<td>j = j - 1</td>
<td>c<sub>6</sub>(T-(n-1))</td>
</tr>
<tr>
<td>}</td>
<td>0</td>
</tr>
<tr>
<td>}</td>
<td>c<sub>7</sub>(n-1)</td>
</tr>
<tr>
<td>}</td>
<td>0</td>
</tr>
</tbody>
</table>

\[T = t_2 + t_3 + \ldots + t_n \] where \(t_i \) is number of while expression evaluations for the \(i^{th} \) for loop iteration
Analyzing Insertion Sort

- \(T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4T + c_5(T - (n-1)) + c_6(T - (n-1)) + c_7(n-1) \)
 \(= c_8T + c_9n + c_{10} \)

- What can \(T \) be?
 - Best case -- inner loop body never executed
 - \(t_i = 1 \iff T(n) \) is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - \(t_i = i \iff T(n) \) is a quadratic function
 - If \(T \) is a quadratic function, which terms in the above equation matter?
Upper Bound Notation

- We say InsertionSort’s run time is \(O(n^2) \)
 - Properly we should say run time is \(\text{in } O(n^2) \)
 - Read O as “Big-O” (you’ll also hear it as “order”)

- In general a function
 - \(f(n) \text{ is } O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \)

- Formally
 - \(O(g(n)) = \{ f(n): \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \forall n \geq n_0 \} \)
Big O Fact

- A polynomial of degree k is $O(n^k)$
- Proof:

 - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + \ldots + b_1 n + b_0$

 - Let $a_i = |b_i|

 - $f(n) \leq a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$

 - $\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$
Lower Bound Notation

- We say InsertionSort’s run time is $\Omega(n)$
- In general a function
 - $f(n)$ is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \leq c \cdot g(n) \leq f(n) \ \forall \ n \geq n_0$
A function $f(n)$ is $\Theta(g(n))$ if there exist positive constants c_1, c_2, and n_0 such that

$$c_1 g(n) \leq f(n) \leq c_2 g(n) \quad \forall \ n \geq n_0$$
Other Asymptotic Notations

- A function \(f(n) \) is \(o(g(n)) \) if \(\exists \) positive constants \(c \) and \(n_0 \) such that
 \[f(n) < c \ g(n) \ \forall \ n \geq n_0 \]

- A function \(f(n) \) is \(\omega(g(n)) \) if \(\exists \) positive constants \(c \) and \(n_0 \) such that
 \[c \ g(n) < f(n) \ \forall \ n \geq n_0 \]
Notation Summary

- $o()$ is like $<$
- $O()$ is like \leq
- $\omega()$ is like $>$
- $\Omega()$ is like \geq
- $\Theta()$ is like $=$
Recurrence: an equation that describes a function in terms of its value on smaller functions

\[s(n) = \begin{cases}
0 & n = 0 \\
 n + s(n-1) & n > 0
\end{cases} \]

\[T(n) = \begin{cases}
c & n = 1 \\
 aT\left(\frac{n}{b}\right) + cn & n > 1
\end{cases} \]
Review: Solving Recurrences

- Substitution method
- Recursion tree method
- Master method
Review: Substitution Method

● Substitution Method:
 ■ Guess the form of the answer, then use induction to find the constants and show that solution works
 ■ Examples:
 ♦ $T(n) = 2T(n/2) + \Theta(n)$ \uparrow $T(n) = \Theta(n \lg n)$
 ■ We can show that this holds by induction
Substitution Method

- Our goal: show that
 \[T(n) = 2T(\lfloor n/2 \rfloor) + n = O(n \lg n) \]
- Thus, we need to show that \(T(n) \leq c \, n \, \lg n \) with an appropriate choice of \(c \)
 - Inductive hypothesis: assume
 \[T(\lfloor n/2 \rfloor) \leq c \, \lfloor n/2 \rfloor \, \lg \lfloor n/2 \rfloor \]
 - Substitute back into recurrence to show that \(T(n) \leq c \, n \, \lg n \) follows, when \(c \geq 1 \)
Review: Recursion Tree

- Recursion tree method:
 - Expand the recurrence into a tree form
 - Work some algebra to express as a summation
 - Evaluate the summation
Review: The Master Theorem

- Given: a *divide and conquer* algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(n)$

- Then, the Master Theorem gives us a cookbook for the algorithm’s running time:
Review: The Master Theorem

- if \(T(n) = aT(n/b) + f(n) \) then

\[
T(n) = \begin{cases}
\Theta\left(n^{\log_b a}\right) & f(n) = O\left(n^{\log_b a - \varepsilon}\right) \\
\Theta\left(n^{\log_b a \log n}\right) & f(n) = \Theta\left(n^{\log_b a}\right) \\
\Theta\left(f(n)\right) & f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right) \text{ AND} \\
\quad af(n/b) < cf(n) \text{ for large } n
\end{cases}
\]

\(\varepsilon > 0 \) \quad c < 1
Review: Merge Sort

MergeSort(A, left, right) {
 if (left < right) {
 mid = floor((left + right) / 2);
 MergeSort(A, left, mid);
 MergeSort(A, mid+1, right);
 Merge(A, left, mid, right);
 }
}

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Merge() takes O(n) time, n = length of A
Review: Analysis of Merge Sort

<table>
<thead>
<tr>
<th>Statement</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>MergeSort(A, left, right) {</td>
<td>T(n)</td>
</tr>
<tr>
<td>if (left < right) {</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>mid = floor((left + right) / 2);</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>MergeSort(A, left, mid);</td>
<td>T(n/2)</td>
</tr>
<tr>
<td>MergeSort(A, mid+1, right);</td>
<td>T(n/2)</td>
</tr>
<tr>
<td>Merge(A, left, mid, right);</td>
<td>Θ(n)</td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>

* So $T(n) = \Theta(1)$ when $n = 1$, and

$$2T(n/2) + \Theta(n) \text{ when } n > 1$$

* Solving this recurrence (*how?*) gives $T(n) = n \lg n$
A heap is a “complete” binary tree, usually represented as an array:

\[A = [16, 14, 10, 8, 7, 9, 3, 2, 4, 1] \]
Review: Heaps

- To represent a heap as an array:

 \[
 \text{Parent}(i) \{ \text{ return } \left\lfloor \frac{i}{2} \right\rfloor; \} \\
 \text{Left}(i) \{ \text{ return } 2\times i; \} \\
 \text{right}(i) \{ \text{ return } 2\times i + 1; \}
 \]
Heaps also satisfy the **heap property**:

\[A[Parent(i)] \geq A[i] \quad \text{for all nodes } i > 1 \]

- In other words, the value of a node is at most the value of its parent
- The largest value is thus stored at the root \((A[1])\)

Because the heap is a binary tree, the height of any node is at most \(\Theta(\lg n)\).
Review: Heapify()

- **Heapify()**: maintain the heap property
 - Given: a node \(i \) in the heap with children \(l \) and \(r \)
 - Given: two subtrees rooted at \(l \) and \(r \), assumed to be heaps
 - Action: let the value of the parent node “float down” so subtree at \(i \) satisfies the heap property
 - Recurse on that subtree
 - Running time: \(O(h) \), \(h = \) height of heap = \(O(lg \, n) \)
Review: BuildHeap()

- **BuildHeap()**: build heap bottom-up by running **Heapify()** on successive subarrays
 - Walk backwards through the array from n/2 to 1, calling **Heapify()** on each node.
 - Order of processing guarantees that the children of node i are heaps when i is processed
- Easy to show that running time is $O(n \lg n)$
- Can be shown to be $O(n)$
 - Key observation: most subheaps are small
Review: Heapsort()

- **Heapsort**: an in-place sorting algorithm:
 - Maximum element is at A[1]
 - Discard by swapping with element at A[n]
 - Decrement heap_size[A]
 - A[n] now contains correct value
 - Restore heap property at A[1] by calling **Heapify()**

- Running time: $O(n \lg n)$
 - **BuildHeap**: $O(n)$, **Heapify**: $n \times O(\lg n)$
Review: Priority Queues

- The heap data structure is often used for implementing *priority queues*
 - A data structure for maintaining a set S of elements, each with an associated value or *key*
 - Supports the operations `Insert()`, `Maximum()`, and `ExtractMax()`
 - Commonly used for scheduling, *event simulation*
Priority Queue Operations

- **Insert(S, x)** inserts the element x into set S
- **Maximum(S)** returns the element of S with the maximum key
- **ExtractMax(S)** removes and returns the element of S with the maximum key
Implementing Priority Queues

```c
HeapInsert(A, key)  // what’s running time?
{
    heap_size[A] ++;
    i = heap_size[A];
    while (i > 1 AND A[Parent(i)] < key)
    {
        i = Parent(i);
    }
    A[i] = key;
}
```
Implementing Priority Queues

HeapMaximum(A)
{
 // This one is really tricky:

 return A[i];
}

Implementing Priority Queues

HeapExtractMax(A)
{
 if (heap_size[A] < 1) { error; }
 max = A[1];
 heap_size[A] --;
 Heapify(A, 1);
 return max;
}

Review: Quicksort

- **Quicksort pros:**
 - Sorts in place
 - Sorts $O(n \log n)$ in the average case
 - Very efficient in practice

- **Quicksort cons:**
 - Sorts $O(n^2)$ in the worst case
 - Naïve implementation: worst-case = sorted
 - Even picking a different pivot, some particular input will take $O(n^2)$ time
Review: Quicksort

- Another divide-and-conquer algorithm
 - The array $A[p..r]$ is *partitioned* into two non-empty subarrays $A[p..q]$ and $A[q+1..r]$
 - Invariant: All elements in $A[p..q]$ are less than all elements in $A[q+1..r]$
 - The subarrays are recursively quicksorted
 - No combining step: two subarrays form an already-sorted array
Review: Quicksort Code

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}
Review: Partition Code

\[
\text{Partition}(A, p, r) \\
\quad x = A[p]; \\
\quad i = p - 1; \\
\quad j = r + 1; \\
\quad \text{while (TRUE)} \\
\quad \quad \text{repeat} \\
\quad \quad \quad j--; \\
\quad \quad \quad \text{until } A[j] \leq x; \\
\quad \quad \text{repeat} \\
\quad \quad \quad i++; \\
\quad \quad \quad \text{until } A[i] \geq x; \\
\quad \quad \text{if } (i < j) \\
\quad \quad \quad \text{Swap}(A, i, j); \\
\quad \quad \text{else} \\
\quad \quad \quad \text{return } j;
\]

\text{partition()} \text{ runs in } O(n) \text{ time}
Review: Analyzing Quicksort

- What will be the worst case for the algorithm?
 - Partition is always unbalanced

- What will be the best case for the algorithm?
 - Partition is perfectly balanced

- Which is more likely?
 - The latter, by far, except...

- Will any particular input elicit the worst case?
 - Yes: Already-sorted input
Review: Analyzing Quicksort

- In the worst case:
 \[T(1) = \Theta(1) \]
 \[T(n) = T(n - 1) + \Theta(n) \]

- Works out to
 \[T(n) = \Theta(n^2) \]
In the best case:

\[T(n) = 2T(n/2) + \Theta(n) \]

Works out to

\[T(n) = \Theta(n \lg n) \]
Review: Analyzing Quicksort

- Average case works out to $T(n) = \Theta(n \lg n)$
- Key idea: A limited number of unbalanced Partition() is OK
Review: Improving Quicksort

- The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input
- Book discusses two solutions:
 - Randomize the input array, OR
 - *Pick a random pivot element*
- *How do these solve the problem?*
 - By insuring that no particular input can be chosen to make quicksort run in $O(n^2)$ time
Sorting Summary

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than \(~50\) elements)
 - Fast on nearly-sorted inputs
 - \(O(n^2)\) worst case
 - \(O(n^2)\) average (equally-likely inputs) case
 - \(O(n^2)\) reverse-sorted case
Sorting Summary

● Merge sort:
 ■ Divide-and-conquer:
 ◆ Split array in half
 ◆ Recursively sort subarrays
 ◆ Linear-time merge step
 ■ \(O(n \lg n) \) worst case
 ■ Doesn’t sort in place
Sorting Summary

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children’s keys
 - $O(n \log n)$ worst case
 - Sorts in place
 - Fair amount of shuffling memory around
Sorting Summary

• Quick sort:
 ■ Divide-and-conquer:
 ◆ Partition array into two subarrays, recursively sort
 ◆ All of first subarray < all of second subarray
 ◆ No merge step needed!
 ■ $O(n \log n)$ average case
 ■ Fast in practice
 ■ $O(n^2)$ worst case
 ◆ Naïve implementation: worst case on sorted input
 ◆ Address this with randomized quicksort
Review: Comparison Sorts

- Comparison sorts: $O(n \lg n)$ at best
 - Model sort with decision tree
 - Path down tree = execution trace of algorithm
 - Leaves of tree = possible permutations of input
 - Tree must have $n!$ leaves, so $O(n \lg n)$ height
Review: Comparison Sorts

<table>
<thead>
<tr>
<th>Sorting</th>
<th>Time</th>
<th>Space</th>
<th>Stability</th>
<th>In place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Worst</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \lg(n))$</td>
<td>$O(n \lg(n))$</td>
<td>$O(n \lg(n))$</td>
<td>$\Theta(n \lg(n))$</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$\Theta(n \lg(n))$</td>
<td>$\Omega(n \lg(n))$</td>
<td>$O(n \lg(n))$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>$O(n \lg(n))$</td>
<td>$\Theta(n^2)$</td>
<td>$O(n \lg(n))$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Review: Counting Sort

- Counting sort:
 - Assumption: input is in the range 1..k
 - Basic idea:
 - Count number of elements \(k \leq \) each element \(i \)
 - Use that number to place \(i \) in position \(k \) of sorted array
 - No comparisons! Runs in time \(O(n + k) \)
 - Stable sort
 - Does not sort in place:
 - \(O(n) \) array to hold sorted output
 - \(O(k) \) array for scratch storage
Review: Counting Sort

1 CountingSort(A, B, k)
2 for i=1 to k
3 \hspace{1em} C[i]= 0;
4 for j=1 to n
5 \hspace{1em} C[A[j]] += 1;
6 for i=2 to k
7 \hspace{1em} C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 \hspace{1em} B[C[A[j]]] = A[j];
10 \hspace{1em} C[A[j]] -= 1;
Review: Radix Sort

- Radix sort:
 - Assumption: input has d digits ranging from 0 to k
 - Basic idea:
 - Sort elements by digit starting with least significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over n numbers with d digits takes time $O(n+k)$, so total time $O(dn+dk)$
 - When d is constant and $k=O(n)$, takes $O(n)$ time
 - Fast! Stable! Simple!
 - Doesn’t sort in place
Motivation: symbol tables

- A compiler uses a *symbol table* to relate symbols to associated data
 - Symbols: variable names, procedure names, etc.
 - Associated data: memory location, call graph, etc.
- For a symbol table (also called a *dictionary*), we care about search, insertion, and deletion
- We typically don’t care about sorted order
Review: Hash Tables

- More formally:
 - Given a table T and a record x, with key (= symbol) and satellite data, we need to support:
 - Insert (T, x)
 - Delete (T, x)
 - Search(T, x)
 - Don’t care about sorting the records
- Hash tables support all the above in O(1) expected time
Review: Direct Addressing

- Suppose:
 - The range of keys is \(0..m-1\)
 - Keys are distinct

- The idea:
 - Use key itself as the address into the table
 - Set up an array \(T[0..m-1]\) in which
 - \(T[i] = x\) if \(x \in T\) and key\([x]\) = \(i\)
 - \(T[i] = \text{NULL}\) otherwise
 - This is called a direct-address table
Review: Hash Functions

- Next problem: collision
Review: Resolving Collisions

- **How can we solve the problem of collisions?**

- **Open addressing**
 - To insert: if slot is full, try another slot, and another, until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element

- **Chaining**
 - Keep linked list of elements in slots
 - Upon collision, just add new element to list
Review: Chaining

- Chaining puts elements that hash to the same slot in a linked list:
Review: Analysis Of Hash Tables

- **Simple uniform hashing**: each key in table is equally likely to be hashed to any slot

- **Load factor** $\alpha = n/m = \text{average # keys per slot}$
 - Average cost of unsuccessful search = $O(1+\alpha)$
 - Successful search: $O(1+\alpha/2) = O(1+\alpha)$
 - If n is proportional to m, $\alpha = O(1)$

- So the cost of searching = $O(1)$ if we size our table appropriately
Choosing the hash function well is crucial

- Bad hash function puts all elements in same slot
- A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data

Methods:

- Division method
- Multiplication method
Review: The Division Method

- \(h(k) = k \mod m \)
 - In words: hash \(k \) into a table with \(m \) slots using the slot given by the remainder of \(k \) divided by \(m \)
- Elements with adjacent keys hashed to different slots: good
- If keys bear relation to \(m \): bad
- Upshot: pick table size \(m = \) prime number not too close to a power of 2 (or 10)
Review: The Multiplication Method

- For a constant \(A, \ 0 < A < 1 \):
 \[h(k) = \left\lfloor m \left(kA - \left\lfloor kA \right\rfloor \right) \right\rfloor \]

 Fractional part of \(kA\)

- Upshot:
 - Choose \(m = 2^p \)
 - Choose \(A \) not too close to 0 or 1
 - Knuth: Good choice for \(A = (\sqrt{5} - 1)/2 \)